Paul Hsien-Li Kao, MD Associate Professor of Medicine National Taiwan University

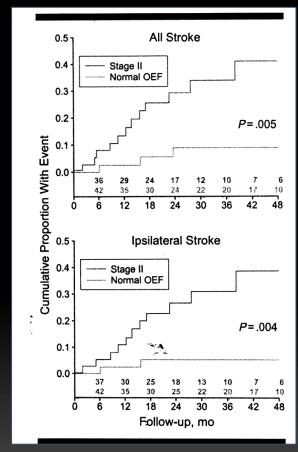
#### RECANALIZATION OF CAROTID CTO

-INDICATION AND METHOD FOR A CONTROVERSIAL PROCEDURE-

## What's the controversy?

- Endarterectomy and stenting have been proven in preventing stroke in patients with carotid stenosis
- But revascularization for carotid CTO is "contraindicated" in the current guideline
- In fact, carotid CTO carries high subsequent stroke rates (5-7% per year)

  Hankey GJ, et al. Cerebrovasc Dis 1991;1:245


Derdeyn CP, et al. Neurology 1999;53:251

## Myths about carotid CTO

- With cessation of antegrade flow, the risk of embolic stroke is low
- Surgical bypass failed to show benefit
- It is rare, and endovascular recanalization is difficult and dangerous

## Cerebral hypoperfusion

- Severe carotid stenosis or occlusion leads to cerebral hypo-perfusion
- Annual stroke risk is as high as 20% with objective cerebral ischemia



Klijn CJ, et al. Stroke 1997;28:2084 Grubb RL Jr, et al. JAMA 1998;280:1055

## Myths about carotid CTO

- With cessation of antegrade flow, the risk of embolic stroke is low
- Surgical bypass failed to show benefit
- It is rare, and endovascular recanalization is difficult and dangerous

## Why surgeons failed in carotid CTO?

- Endarterectomy is not possible as the distal end of the occlusion is often located high
- Extracranial-intracranial bypass failed to yield benefit in the EC-IC trial, due to high surgical complication and poor patient selection

EC/IC Bypass Study Group. N Engl J Med 1985;313:1191

COSS (Carotid Occlusion Surgery Study) currently undergoing

Grubb RL Jr, et al. Neurosurg focus 2003;14(3):e9

## Myths about carotid CTO

- With cessation of antegrade flow, the risk of embolic stroke is low
- Surgical bypass failed to show benefit
- It is rare, and endovascular recanalization is difficult and dangerous

#### Incidence of carotid CTO

- CS program started in Apr 1998 in NTUH
- 1128 CS done so far, with 160 CAO attempts since Feb 2002
- Roughly 14% CTO in all CS cases
- Majority of the referred carotid CTO were symptomatic/ischemic (91%, 160/176)

Feasibility and safety has been reported

JACC 2007;49:765-771

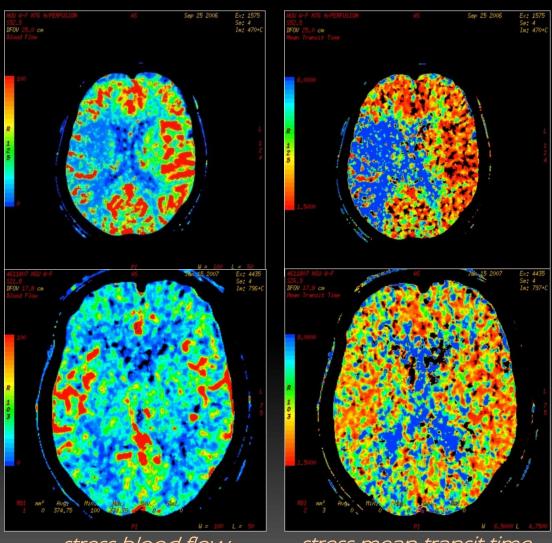
Circ Cardiovasc Intervent 2008;1:119-125

# NTUH CTO data

| N=160                 |                      |     |
|-----------------------|----------------------|-----|
| CCA diameter (mm)     | 7.9 <sup>±</sup> 0.6 |     |
| ICA diameter (mm)     | 5.o±o.6              |     |
| Occlusion length (mm) | 49 <sup>±</sup> 21   |     |
| Wire crossing success | 110                  | 69% |
| Final residual DS     | 4 <sup>±</sup> 7     |     |
| Technical success     | 109                  | 68% |

## NTUH CTO data

|                           | 30d (%), N=160 | 31d-1y (%), N=155 |  |
|---------------------------|----------------|-------------------|--|
| Death                     | 1 (0.6)        | 3 (1.9)           |  |
| Neurological              | 1 (0.6)        | 1                 |  |
| Other cause               | О              | 2                 |  |
| Non-fatal ischemic stroke | 2 (1.3)        | 2 (1.3)           |  |
| Major ipsi.               | O              | O                 |  |
| Major non-ipsi.           | O              | 1                 |  |
| Minor ipsi.               | 2              | 1                 |  |
| Minor non-ipsi.           | O              | O                 |  |
| Non-fatal ICH             | 2 (1.3)        | О                 |  |
| ICA injury without event  | 5 (3.1)        | 1 (0.6)           |  |
| Restenosis (DS>50%)       |                | 21 (13.5)         |  |


### Indications for recanalization

- Current indications at NTUH (consensus between neurologist, radiologist, and interventionist)
  - Symptomatic on optimal medical treatment after documentation of CAO, or
  - Objective ischemia by CTP, MRP, or PET

# Example CTP images



post stenting



stress blood flow

stress mean transit time

Paul HL Kao 13

## Interventional techniques

- 8F femoral approach using JR4 GC
- Bi-plane machine with DSA capability
- Bilateral injection sometimes needed for contouring the variable cervical ICA course
- Intra-luminal wiring vs. STAR technique

Kao-Leong scoring system

#### **Devices**

- Micro-catheter support: Finecross, Corsair
- Hydrophylic wire for micro-channel probing and/or STAR maneuver: Fielder FC, XT
- CTO wire for controlled puncture: Conquest Pro
- Workhorse wire for intracranial wiring: Sion, Runthrough
- Long-shaft balloon for pre-dilatation: Ikatzuchi
- IC stent: Driver, Tsunami, Omega
- Cervical stent: Carotid Wallstent

# Kao-Leong score

| Independent Variables | Status        | Coefficient | Scores |
|-----------------------|---------------|-------------|--------|
| Symptom Duration      | < 6m          |             | О      |
|                       | uration >6m   |             | 1      |
|                       | Asx           |             | 2      |
| Stump Angulation      | <45°          | 1.591       | О      |
|                       | >45°          | 2           |        |
| Visible Distal Flow   | Ipsilateral   |             | О      |
|                       | Contralateral | 0.738       | 1      |
|                       | Not visible   |             | 2      |
|                       | < 30cm        | 2.226       | О      |
| Lesion Length         | > 3ocm        | 2.220       | 3      |

## Kao-Leong score

| KL Score | Success Rate |
|----------|--------------|
| 0-2      | 94.87%       |
| 3-4      | 70.59%       |
| 5-6      | 39.47%       |
| >6       | 33.33%       |

Will be presented in EuroPCR '13

## Example case of techniques



76y man with left hemi for 2ys

Neck Duplex: R't CAO with reversed OA flow

**OMT** 

### Ischemia documented



Worsening mentality for 1y but no recurrent "carotid sx"

Significant right hemisphere ischemia by CTP

## Neurology consult



Duplex: same findings

ADAS 8  $\rightarrow$  14 MMSE 20  $\rightarrow$  15

# Angiography



Cervical R't CAO 2cm from orifice

Reverse OA flow into distal ICA

Willis circle intact

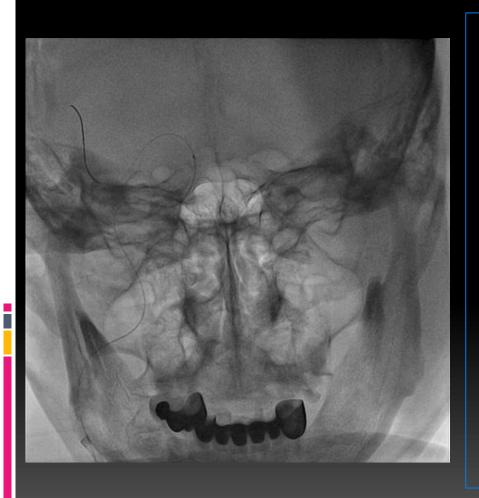
KL score 5

# Wiring cervical/petrous ICA



Fielder FC in Finecross, advanced into distal ICA just proximal to OA takeoff

Further advancement impossible


## Wiring cavernous/clinoid ICA



Fielder FC exchanged to Conquest Pro

With careful and delicate manipulation Conquest Pro entered MCA

# Wire exchange and ballooning



Runthrough NC Floppy exchanged through Finecross into M<sub>3</sub> branch

1.25x10 Ottimo at 6atm,2.5x15 Ottimo at 6atm

## Stenting preparation



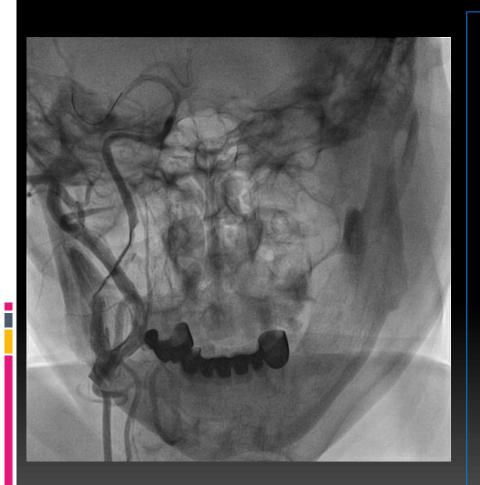
Recanalization achieved

SBP lowered to 140mmHg by nitroglycerin iv

ACT checked at 240"

# Intracranial stenting




Tsunami 3.0x25 implanted at 10atm

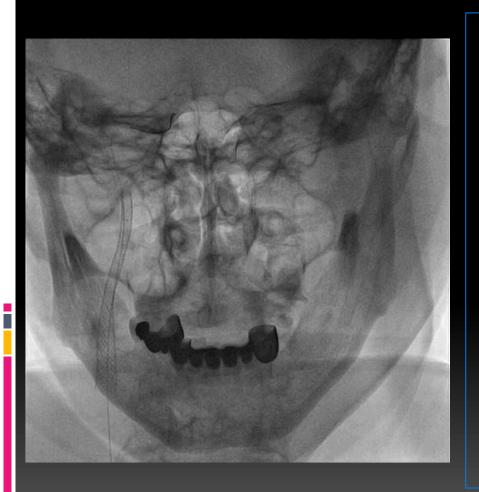
# Distal cervical stenting



Tsunami 3.5x30 implanted at 1oatm

## After balloon-expandable stents



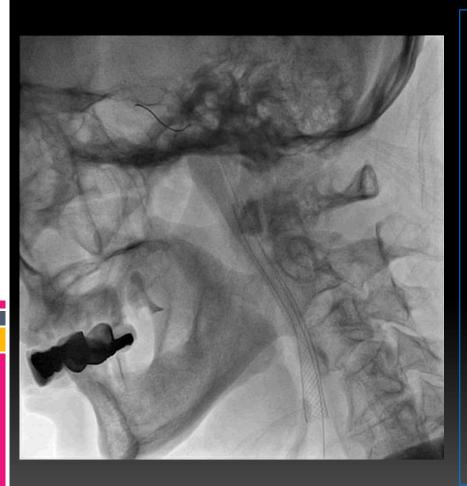

1 long self-expanding stent needed to cover the whole occlusion segment

## Proximal cervical stenting



Carotid Wall stent 8x29 deployed and postdilated with 4x15 Maverick at 10atm

## Final image




CCU overnight hemodynamic management

No post-procedure anticoagulation

DAPT for 3m

## Post-stenting course



Discharged D<sub>3</sub>

Recovery of R't hemisphere ischemia by CTP at 3m

ADAS 14  $\rightarrow$  5 MMSE 15  $\rightarrow$  26

# Effect on cognitive function

 Impaired cerebral perfusion impairs cognitive function

Stroke 2003;34:1491-1424 J Neurol 2003;250:1340-1347 Ann Intern Med 2004;140:237-247

 Our results demonstrated cognitive improvement after carotid stenting, and its correlation to cerebral perfusion, not only in CTO cases but also in "asymptomatic" patients

> Stroke 2011;42:2850-2854 Int J Cardiol 2012;157:104-107 JACC published online April 10, 2013 doi:10.1016/j.jacc.2013.02.059

# Improved cognition in successful cases

|                | Sı                     | uccessful              |       | Unsuccessful             |                          |       |  |
|----------------|------------------------|------------------------|-------|--------------------------|--------------------------|-------|--|
|                | baseline               | 3m                     | p     | baseline                 | 3m                       | р     |  |
| ADAS           | 7.7±8.9                | 5.7 <sup>±</sup> 7.1   | 0.024 | 8.7±9.7                  | 9.7 <sup>±</sup> 11.1    | 0.268 |  |
| MMSE           | 25.8±3.8               | 27.7 <sup>±</sup> 2.7  | 0.015 | 24.7±5.6                 | 25.7±4.9                 | 0.422 |  |
| Color trail A  | 123.2±68.6             | 99.3 <sup>±</sup> 51.5 | 0.017 | 141.3 <sup>±</sup> 101.0 | 138.3 <sup>±</sup> 103.7 | 0.799 |  |
| Color trail B  | 196.2±99.3             | 175.1±85.5             | 0.169 | 176.8±82.1               | 182.0±92.3               | 0.397 |  |
| Verbal fluency | 26.3 <sup>±</sup> 14.0 | 27.3 <sup>±</sup> 10.2 | 0.937 | 27.5 <sup>±</sup> 9.4    | 25.3±6.5                 | 1.0   |  |
| NIHSS          | o.6±o.9                | 0.4±0.7                | 0.157 | o.6±o.8                  | o.6±o.8                  |       |  |
| Barthel index  | 97.5 <sup>±</sup> 8.7  | 98.8±4.3               | 0.317 | 95.7 <sup>±</sup> 7.3    | 97.1±3.9                 | 0.310 |  |

# Correlation with cerebral perfusion

|         | Ischemia(+) failed |                |       | Ische           | Ischemia(+) success |       |                | Ischemia(-) success |      |  |
|---------|--------------------|----------------|-------|-----------------|---------------------|-------|----------------|---------------------|------|--|
|         | Baseline           | 3m             | р     | Baseline        | 3m                  | р     | baseline       | 3m                  | р    |  |
| NIHSS   | 0.17±0.4<br>1      | 0.17±0.4<br>1  | 1.0   | 0.24±0.5<br>6   | 0.12±0.3<br>3       | 0.32  | 0              | 0.18±0.6<br>0       | 0.32 |  |
| ВІ      | 99.2±2.0           | 99.2±2.0       | 1.0   | 100             | 99.4±2.4            | 0.32  | 100            | 100                 | 1.0  |  |
| ADAS    | 5.2±1.7            | 4.7±2.1        | 0.52  | 6.2±3.6         | 4.9±2.8             | 0.033 | 6.5±4.8        | 5.6±5.1             | 0.07 |  |
| MMSE    | 26.7±2.1           | 27.8±2.3       | 0.066 | 25.8±3.8        | 27.4±3.5            | 0.007 | 27.1±3.1       | 27.4±2.7            | 0.73 |  |
| Color A | 97.2±67.<br>4      | 110.0±63<br>.9 | 0.17  | 120.4±73<br>.9  | 95.8±57<br>6        | 0.004 | 82.7±51.3      | 84.o±58.7           | o.66 |  |
| Color B | 168.0±74<br>.4     | 169.3±8<br>8.2 | 0.83  | 193.1±10<br>4.3 | 184.6±95<br>.2      | 0.352 | 135.3±70.<br>2 | 136.6±78<br>.1      | 0.96 |  |
| Verbal  | 32.5±8.0           | 29.2±6.7       | 0.34  | 25.7±8.5        | 27.1±6.9            | 0.92  | 30.4±10.<br>0  | 33.6±7.5            | 0.08 |  |

### Conclusions 1

- Recanalization is feasible for carotid CTO, improves cerebral perfusion and cognitive function
- The proposed indications are: persistent sx or objective viable ischemia
- The techniques are mostly adapted from coronary CTO intervention

### Conclusions 2

- A scoring system may help the beginner to start with more feasible cases
- Carotid intervention not only prevents embolic stroke, but also correct cerebral ischemia and improve mental functions
- The term "asymptomatic" needs serious reconsideration